The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0 X^2  0  0 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0  0  0 X^2 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 X^2 X^2  0 X^2 X^2 2X^2  0  0 2X^2 X^2 2X^2  0 2X^2 X^2 2X^2  0 2X^2 2X^2 2X^2  0  0  0 X^2 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2  0
 0  0 X^2  0 2X^2 X^2 2X^2 X^2 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0  0 X^2 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0 X^2 2X^2 X^2 X^2  0 X^2  0 2X^2 X^2 X^2  0 X^2  0 2X^2  0 2X^2 2X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2  0  0 X^2 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0  0  0 X^2 2X^2
 0  0  0 X^2 2X^2 2X^2  0 2X^2 2X^2 2X^2 X^2  0 2X^2  0 2X^2 X^2 X^2  0 X^2 X^2 X^2 2X^2 X^2  0 X^2 2X^2  0  0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2  0  0  0 X^2 X^2 2X^2 2X^2 X^2  0  0  0 2X^2 X^2  0 2X^2  0 X^2 X^2 2X^2 2X^2 2X^2 X^2 X^2  0  0  0  0 X^2 X^2 2X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 X^2  0  0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2  0  0  0  0 2X^2  0 X^2

generates a code of length 97 over Z3[X]/(X^3) who�s minimum homogenous weight is 192.

Homogenous weight enumerator: w(x)=1x^0+22x^192+156x^193+486x^194+30x^195+8x^198+14x^201+4x^204+2x^213+6x^220

The gray image is a linear code over GF(3) with n=873, k=6 and d=576.
This code was found by Heurico 1.16 in 0.425 seconds.